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Two general coordinate systems have been used extensively in computational
fluid dynamics: the Eulerian and the Lagrangian. The Eulerian coordinates cause
excessive numerical diffusion across flow discontinuities, slip lines in particular.
The Lagrangian coordinates, on the other hand, can resolve slip lines sharply but
cause severe grid deformation, resulting in large errors and even breakdown of the
computation. Recently, Het al.(J. Comput. Phy<53 596 (1999)) have introduced
a unified coordinate system which moves with velotity q being velocity of the
fluid particle. It includes the Eulerian system as a special case Wwhei® and
the Lagrangian wheh = 1 and was shown to be superior to both Eulerian and
Lagrangian systems for the two-dimensional Euler equations of gas dynamics when
his chosen to preserve the grid angles. The main purpose of this paper is to extend
the work of Huiet al. to the three-dimensional Euler equations. In this case, the
free functionh is chosen so as to preserve grid skewness. This results in a coordinate
system which avoids the excessive numerical diffusion across slip lines in the Eulerian
coordinates and avoids severe grid deformation in the Lagrangian coordinates; yet it
retains sharp resolution of slip lines, especially for steady flow.2001 Academic Press

Key Words:unified description; Eulerian description; Lagrangian description;
inviscid compressible flow; slip lines; hyperbolicity of Euler equations.

1. INTRODUCTION

Itis well known that the use of Eulerian coordinates for shock capturing methods res
in badly smeared slip lines, and that Lagrangian coordinates, while capable of produc
sharp slip line resolution, may result in severe grid deformation, causing inaccuracy
even breakdown of computation. A unified coordinate system was recently introduced
Hui et al. [1]) in which the flow variables are considered to be functions of time and ¢
some permanentidentificationggeudo-particlesrhich move with velocityq, q being the
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velocity of fluid particles. It includes the Eulerian coordinates as special caselwheh
and the Lagrangian wheim= 1. For two-dimensional inviscid flow as governed by the
Euler equations of gas dynamics, the free functiamchosen so as to preserve grid angles
This results in a coordinate system which avoids excessive humerical diffusion across
lines in the Eulerian coordinates and avoids severe grid deformations in the Lagrang
coordinates; yet it retains sharp resolution of slip lines, especially for steady flow.

The purpose of this paper is to extend the work of [1] to the three-dimensional (3-D) Eu
equations. Since a computational cell in the 3-D case has two grid angles, it is gener
impossible for one free function in the unified coordinake$p be chosen to preserve both
grid angles. Instead, we require that the free funchidre chosen so that the skewness of
computational cells be preserved during the time marching. This has proved to be succe:
in that the unified coordinate system yields results which are superior to the Eulerian sys
in slip (contact) line resolution and which avoids severe grid deformation in the Lagrangi
system.

In Section 2, the 3-D Euler equations are written in the unified coordinates. Sectiol
explains how the free functiolmis to be determined to preserve grid skewness. Section
outlines the Riemann solution to the 1-D problem resulting from splitting of the 3-D Euls
equations. This Riemann solution is then used in Section 5 to build an algorithm. Sectic
gives solutions to two test problems showing the advantages of the unified coordinates
finally, concluding remarks are given in Section 7.

2. 3-D EULER EQUATIONS WRITTEN IN THE UNIFIED COORDINATES

2.1. The Euler Equations of Gas Dynamics

The 3-D unsteady inviscid polytropic gas flow is governed, under Eulerian descriptic
by the conservation laws

9E  9F L 3G  9H _
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8t+ax+ay+az @)
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pu PU? + p puv puw
E=|pv|, F= pUv , G=| m*+p |, H= pvw ,
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wheret is the time variable(x, y, z) are the Cartesian coordinates, ane- (u, v, w)"

is the flow velocity, withu, v, andw being the components in the y, andz directions,
respectively.p and p are the pressure and density of the flow, respectively. The speci
total energye is

1, p
e=-q+——, 2
21 (y —=Dp @)
wherey is the ratio of specific heats of the gas, assumed constan, u2 + v2 + w2

is the flow speed.
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Under the transformation of variables [1]

dt =da

dx = hud:x + Ad¢ + Ldn + Pd¢
dy = hudx + Bd¢ + Mdn + Qd¢
dz=hwdx + Cdg + Ndy + Rd¢

the Euler equations (1) become

where
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with
AL P
A=detf B M OQ )
C N R
Dé
| = A(ft'f‘ué:x‘f‘vsy‘i‘wé‘_z) = Aﬁ (6)
Dn
J = A + uny + vy + wny) =Aﬁ (7)
D¢
K = A& + ugx + viy + wéy) =Aﬁ (8)
and
0. E.n.0) _ (a(t,x, y.2) )‘1 ©
B(t,X, yv Z) 8()"3%‘7 n’ é‘) ’

We note that the first five equations of (4) express the physical laws of conservatior
mass, momentum, and energy, whereas the last nine equations of (4) are the compati
conditions fordx, dy, anddz in the transformation (3) to be total differentials. They are
also calledyeometric conservation laws

The most important properties of the unified coordinates are the following:

(a) The coordinate£( n, ¢) are material functions of the pseudo-particles whose veloc
ities arehq. Indeed,

D D D
7“&:0’ ﬂzo’ 7*‘;:0’ (10)
Dt Dt Dt

where
D d 0 d 0
2 % el el hw s 11
Dt —at T Vax T ey T2 (11)

is the material derivative following a pseudo-particle. Consequently, computational ce
move and deform with the pseudo-patrticles rather than the fluid particles.

(b) In the special case whdn= 0, (A, L, ..., R) are independent of. Then the co-
ordinates &, n, ¢) are independent of time and are hence fixed in space; this coordinate
system is thus Eulerian.

Inthe special case whén= 1, on the other hand, the pseudo-particles coincide with flui
particles andg, n, ¢) are the material functions of fluid particles, and hence are Lagrangic
coordinates.

In the general casé, is arbitrary. It thus provides a new degree of freedom which ma
be used to advantage: to avoid severe grid deformation in Lagrangian coordinates. It
be shown in this paper that this can be achieved for 3-D fldwisfchosen to preserve grid
skewness.

(c) In steady flow, pathlines are identical with streamlines. Hence a slip line, which
necessarily a pathline, coincides with the streamline of a fluid particle and, therefore, ¢
with the streamline of a pseudo-particle. Consequently, it can be taken to correspond to
of the coordinates* say, thus avoiding the Godunov averaging across it. Therefotiee
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unified coordinate system a slip line can be sharply resolVai is in direct contrast to the
Eulerian coordinate system where a slip line does not coincide with a coordinate line &
as a result, the Godunov averaging across a slip line in a computational cell will fore
smear it.

2.2. Hyperbolicity

It is shown in [2] that the three-dimensional system of unsteady Euler equations in
unified coordinates remains hyperbolic except in the basel (Lagrangian). In the latter
case it is weakly hyperbolic, meaning that while all eigenvalues are real, there does not ¢
a complete set of linearly independent eigenvectors. To avoid possible difficulties, sucl
the existence and uniqueness of weak solutions, arising from the lack of a complete
of eigenvectors, we shall use= 0.999 (or anyh very close to 1.0), for which the Euler
equations are hyperbolic, and shall loosely refer it to be Lagrangian (see Section 5.1
further comments).

2.3. Solution Strategies

As the system of Euler equations (4) written in unified coordinates is in conservati
form, any well-established shock-capturing method can be used to solve it. We shall
the unsplit finite volume method applying the Godunov upwind fluxes across each
tercell boundary with the MUSCL update to higher resolution in space to solve syst
(4). The computation will be done entirely in theté—n—¢ space. A physical cell in
the x—y—z plane marching along the pseudo-particle’s pathline corresponds to a rect
gular cell in theé—n—¢ plane marching in the. direction in the computational space
Ar—E-n—¢. The superscriph refers to the marching time step number and the subscrip
i, j, andk refer to the cell index number on a time plahe= const. The time step
AM" = AL — A" is uniform for alli, j, andk, but is always chosen to satisfy the CFL
stability condition. The grid divides the computational domain into cubic control vo
umes, or cells, which in thg, n, and¢ directions are centered at"( &, ;, ¢«) and have
WidthsA& = & 112 — & 172, Anj = nj41/2 — Nj—12@NAALK = Lkq1/2 — Ck—1/2 (foralln).
Unless otherwise stated we shall use uniform cell witléhfor all i, An; for all j andAgi
for all k.

In the physical spacé,(x, y, z) a cuboid cell marching in, &, n, ¢) space corresponds
to a pseudo-particle moving along its path tube with stegAt = A)). The pseudo-
particle is bounded by six path surfages= & 11,2, n = nj+1/2 and¢ = k+1/2 around its
center. Initially, any curvilinear coordinate grid in tkey—z space may be used as the)—
¢ coordinate grid and the initial geometric variabkes= (A, B,C,L, M, N, P, Q, R)T
determined from (3) as part of the initial conditions. A stationary solid wall is always
path surface of the fluid and hence also of the pseudo-fluid [1]; it is therefore a coordin
surface of the unified coordinates.

Applying the divergence theorem to (4) over the cuboid éelj,(k, n) results in

EPMHL _ gn AL" Fn+L/2 /2 AA" G2 G2
ik T ik T A& ( i+1/2,j,k T i—1/2,12,k> - Anj( ij+1/2k — i,j—1/2,k)

ALY ntag2 n+1/2
N (H 2 — H ) (12)
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withi =1,2, ..., imax ] =12, ..., jmax K= 1, 2, ..., Knmax, Where the notations for the
cell-averages of any quantitfy are
e 1 /Ei“/z /’Ii+1/z /§k+1/2 £ o de dnd ( )
‘,',kzi (}" 7%‘1 r)?é‘) E n {7 13
b AgiAnjAé‘k &1 JInjmiz k-1
and
kn+l

n+1/2 1 UIRET R RV
fi+l/2,],k: MW(AH / / f(k,$i+1/2, n, {) d)\d?’)d{, (14)

Nj-172 Y k-1/2

AN+l

fn+1/2 1 /§|+1/z /§k+1/2 ; ( : ) q d%— q (15)
i,j = A A )"a s 1 ) )" b
Li+1/2k T AR AE Aty e o e Joan Ni+1/2, § ¢

)“nﬁ»l

n+1/2 1 §it1/2 Nj+1/2
fiskiye = AMAE A //\n /E. / f (% & n, tp1j2) drdgdn.  (16)

12 Jnj-12

According to Godunov's idea used in our paper, the cell-interface flﬁﬂégﬁj’k,
G,”Ti/lz/“ andHﬂﬁfw for the cell {, j, k) are to be obtained from the self-similar solution
of local one-dimensional Riemann problems formed by the averaged constart;state
of the cell {, j, k) and those of its adjacent cells.

We remark that the above solution strategies place no restriction on the free fumctior

3. DETERMINATION OF h

The chief advantage of the unified coordinates is the new degree of freedom in choosir
The simplestway would be to choose a constant valug fdroosindh = 0leads to Eulerian
formulation which is highly diffusive, especially in the resolution of contact surfaces; c
the other hand, choosing= 0.999 (effectively Lagrangian formulation) gives excellent
resolution of contact surfaces, but the computation may fail due to severe grid deformat
A choice of constan between 0.0 and 1.0 would yield results somewhere in between t
Eulerian and the Lagrangian.

The main question is: what condition should be imposeldiororder to reduce numerical
diffusion near discontinuities while avoiding severe grid deformation.

For two-dimensional flow, as shown in [1], a good choicelids to preserve the grid
angles in the solution process which marches..irUnfortunately, this idea cannot be
implemented for three-dimensional flow because there is now more than one grid angle
each cell, and one free functitncannot, in general, be chosen to preserve more than ol
angle.

To see this, we note from the transformation (3) that, with (X, y, 2)T,

ar

% = (A,B,C)T =A (17)
ﬂ=(|_,|\/|,N)TE|_ (18)
an

o _ (P,Q,RT =P. (19)

Cle
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For 2-D flow, there is only one grid angéefor a cell

A-L
—1
o =C0S " —, (20)
IAJIL]
whereas there exists another grid angle
AxL P
— sip! R 21
B = sin <|A><L| |P|) (21)
for a cell in 3-D flow. The special case of orthogonal grid correspondstop = 7.
For 2-D flow,h can be chosen to preservei.e.,
o
—~ _0 22
o (22)

Since for 3-D flow, one free functioh cannot be chosen to simultaneously preserve bot
anglesx andg, we choose to preserve the grid skewnesse.,

— =0 23
=0, (23)

where

|A[IL|P] 1
= —1= -1 24
* AxL)-P sina sinB (24)

From the definition of grid skewness it is clear that

(a) « is always non-negative;

(b) Anorthogonal grid, i.eq = 8 = 7, corresponds te = 0;

(c) Adegenerated (or singular) grid, i.e.= 0 or8 = 0 or both, corresponds k0= co.

In this case the Jacobian = det(A, L, P) = (A x L) - P of the transformation (3) is also
singular; i.e.A = 0;

(d) When grid skewnesg, is preserved the Jacobian and hence the transformation (
will not become singular during marching in This, therefore, will prevent breakdown
of computation and may also avoid severe grid deformation as happens in Lagran
coordinates.

Now, skewness-preserving condition (23) is equivalent to

9 D2 8 [IA|L|IP]\?
k+1) :_(| LIl |) o (25)
A R A

which, upon using the last nine equations of (4), leads to an equatidref®follows

oh ah oh
b— — +d-h=0, 26
aBE + o +Ca; + (26)
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where

(27)

(29)

)
b = a- (5~ ) 28
)

i (A LN, (L N (P
4= % (|A|2 V$)+8n <|L|2 v”>+8; <|P|2 W) (30)

Equation (26) is a first-order partial differential equationti¢s, n, ¢; A), with A appear-
ing as a parameter. To find solutiarin the range

0O<h<1 (31)

we note that (26) is linear and homogeneous and, as such, possesses two properties:

(a) positive solutiorh > 0 always exists;
(b) if his a solution to (26) so ik/C, C being any constant.

Making use of property (a), we lgt= In(hq) to get

9909 99
836 TP T %¢

99/q [ A 99/q [ L
d=q(— |— — — -V
c=a (e [ e ) o (5 i
99/q9 | P
BRI v/ . 33

+q< ¢ LPF §D 33
Now, if g; is any solution to (32) theh = €% /qC is a solution to (26) satisfying condition
(31), provided we chooge equal to the maximum &®: /q over the whole flow field being
computed. The reason to work with(hm) instead of Irih) is that from our experience with
steady supersonic flow [3hq is continuous across slip lines; hence working withcan
minimize the numerical errors.

Numerically, Eq. (32) is solved by iteration for non-orthogonal grids.
In the special case of the orthogonal grid, it can be shown that

+d = (32)

where

A L

- —VE=———Vp=——-Ve=0. 34

TR T (34
To see this, we first note that

VE-A=1 VE.-L=0, VE-P=0O (35)

meaning thaV¢ L L andVé L P. If the coordinates are orthogonal, i.e.,

ALL, ALP, (36)
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then from (35) and (36) follows

A _ v

R i 37
Al |VE] (37)
which after substitution into the first equation of (35) leads to
1
|IVE| = —. 38
€l =1a (38)
Finally, using (37) and (38) we get
VE A A
VE =|VE|l -5 =1Vl = —- 39
: IVE| : Al |A2 (39)
Similarly,
L
Vn=— 4
UAATRF (40)
P
Vi = —.
¢ = Br (41)
Hence
a=b=c=d=0 (42)

and Eq. (26) becomes singular; consequehtlig left undetermined, while there is no
guarantee that the grid skewness—orthogonality in this case—is preserved. (If this v
not the case, then dncan be chosen to preserve grid orthogonality in 3-D flow, in particule
3-D steady supersonic flow; this would then contradict the finding of [4] that orthogonal g
for steady supersonic flow with streamlines coinciding with coordinate lines does not e
unless the flow is complex-lamellar, meaniggV x g = 0). Numerically this difficulty
can be avoided: if the grid is orthogonal we do not solve Eq. (26) thgeither, we take
h = 0.999, allowing the grid to deform with the flow untila] + |b| + |c| + |d|) > €. For
our computations we found it satisfactory to take: 10~4. Once the grid is deformed it is
no longer orthogonal and the skewness will be preserved in time according to (26), wt
is now regular.

In the special case of two-dimensional flgv= 7; hencex = ﬁ — 1 and condition
(23) reduces to

cos«xa—a =0, (43)
oA

which is the same as (22) except for the important case of orthogonal grid for whi
a = 7, giving cosx = 0. In the latter case, therefore, imposi%@: 0 does not neces-
sarily lead tog—‘; = 0; i.e., it does not lead to determining the free functiormherefore,
for 2-D flow, it is better to use the grid angle preserving condition (22) than the gr
skewness preserving condition (23) so as to cover the important case of the orthog
grid.
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Computationally, as in the 2-D case [1], Eq. (26) is to be solved at every time step after
flow variablesQ = (p, p, u, v, w)" and the geometric variablés = (A, B,C, L, M, N,
P, Q, R)" are updated.

In closing, we remark that alternative methods of determihiacge possible. For instance,
h can be chosen to preserve the Jacoliaof the transformation (3). But this in the 2-D
case cannot preserve grid orthogonality which, of course, represents the case of opt
coordinates.

4. THE &-SPLIT RIEMANN PROBLEM

Theé-split Riemann problem is obtained by assuming tgé]at: 0 and% =0in(4)and
is given by

9E | OF _
ﬁ+£_o A>0 —oc0o<§& <400

E.. £>0,
where
[ pA T i pA(l—h)(q- VE) 1
pAU pAL—hju(q- V&) + pAéx
pAY pAML—hv(q- VE) + pAgy,
oAw oAl —hw(g - V&) + pAE,
pAe pA(L—h)e(q- V&) + pA(q - VE)
A —hu
. B e —hv 7
C —hw
L 0
M 0
N 0
P 0
Q 0
| R | i 0 i
with
A L P
A=det| B M Q (45)
C N R
e= S+t ud) 4 — P (46)
2 (y = Dp

The vectorsE, andE; in (44) are constant.



UNIFIED COORDINATES & 3-D EULER EQUATIONS 245

Hereafter we shall abandon the last six equations of the system (44), keeping in n
thatL = L,, andP = P;, are given constants.

In order to solve the Riemann problem (44) we project velocity vegtar the directions
normal to the plané& = const. and tangential to it. For that reason we introduce thre
orthogonal unit vectors |, k, with i being normal to the coordinate plafe= const. and

j andk tangential to it. Accordingly,

(0507 1) |f§y=§2=0

. Lo 1
1= (1,12,13) = @(Sx; &y; &2), (47)
= (0 —£,: &) fEZ+E2H#0
=102 j) = { Bk ’ g (48)
(07 15 0) If Sy = gZ = Oa
1 2 4 g2 g2 | g2
—————— (& + &7 —&&y; —&&z) ITE;+E7#0
Mﬂmmxyz{WWﬁ%“ ’ L . (49)

Let us rewrite (44) by using the component of velogjtin the directioni normal to, and
j andk tangential to, the plang = const.; i.e.,

w=q-i, nm=0q-j, 2=0q-k. (50)
Theé&-split Riemann problem (44) then becomes

%+%=O A=0, —o0o<& <400

E, £<0 (51)

HQQZ{E £>0

where
AN F p(l—hw ]
pAw p(L—hw®+p
pATY p(1—hot
E_ pAT CF=s p(l-hwrt, ’
pAe p(1—hywe+ wp
A —hu/S
B —hv/S
L C | L —hw/S
with
1/2
M Q> |L P|? |L PJ?
S=A-|V&| = .
IVEl ON R M R +M Q

Our purpose is to find the fluk on ¢ = 0 to be used in the Godunov scheme to update th
conserved quantities. Time levelA" will be taken to be equal to 0 for convenienben
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(51) is taken to be equal tf = h, for ¢ < 0 andh?,, = h, for & > 0. That is to say, they
are assumed constant forOA < AR,

h
g_/\zo 0<i< AN (52)

and this is consistent with the equation fof26). Buth changes its value @t = AX as
given by (26), whose coefficients are evaluated at AA.

The detailes of obtaining the solution to the Riemann problem (51) are given in t
Appendix.

5. NUMERICAL PROCEDURE

5.1. Remarks on Our Numerical Method

Before describing in detail the numerical procedure for solving the system (4) we me
some remarks on our numerical method.

The first remark is related to the order of accuracy of the chosen method. Althou
Godunov—MUSCL scheme is used to give improved resolution in space, the accur
in time in our computation is of first-order. In practice, however, the results for twe
dimensional problems computed using our method are indistinguishable from the th
retically more accurate method obtained in [1] by using Strang splitting; Strang splitting
a three-dimensional case requires considerably more computing time.

Secondly, we emphasize the difference between the solution strategy used in [1] and
in the present paper. In [1] the split Riemann problems are solved using the time step-v
Eulerian approximation (TSE); namely, the Riemann problems for the physical conserva
laws are solved while the geometric variables are kept unchanged. In the present wor}
do not need this additional approximation, because the split Riemann problems are so
for the geometric variables as well as for the physical variables (for example, in solving
&-split Riemann problem, the formulas fér can also be obtained although they are not
needed in calculating the fluX). In other words, TSE is not used in the present approact

Lastly, in solving the split Riemann problems (see Appendix) we do not need to U
explicitly the complete set of right eigenvectors. The eigenvectors that are used are tf
corresponding to the genuinely nonlinear characteristic families; these eigenvectors
ist even in the casd = 1 (Lagrangian coordinates). The missing eigenvectors in Le
grangian coordinates correspond to the linearly degenerated characteristic families
are not employed in constructing solutions to the split Riemann problems. This also
plains why our computations withh= 1 encounter no difficulty and produce results iden-
tical to that forh = 0.999 and also justifies calling tHe= 0.999 solution a Lagrangian
one. We have presented results foe= 0.999, rather than foh = 1.0, and called them
Lagrangian because the theoretical base for the existence and unigueness of the
mann problem foh = 1.0 is not certain. We further note that if some approximate Rie
mann solver is used, for example, the Roe solver, or any other method which requ
a complete set of eigenvectors, computation for the basel might have serious diffi-
culties.
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5.2. Computational Steps

Step 1(Initialization). Assume the initial conditions of a flow problem are given at
t = 0(x = 0) in thex—y-z space. Then an appropridten—¢ coordinate grid is laid on the
x—y-z plane (for instance, we tale n, and¢ equal to the arc length of their corresponding
coordinate line in the—y—zspace), witlf = &g, &1, &2, ..., &ivaor 1 = 10, 11, 1125+ -+ + s Njimaes
and¢ = ¢o, ¢1, §2, - - -, Lkae the surface = & (or/and any other coordinate surface, de-
pending on the problem) coinciding with the solid surface if there is one. Hence t
conservative variabIeEﬁ j k are obtained by averaging the given flow over the computation:
cell i, j K). They are used togetherwﬂfﬁJ « as initial conditions. Subsequent@, k=
(p°, p°, u°, 0 wo).,k,l=1,2,-.-,imax,J—12 . jmax K=1,2, ..., Kmax are ob-
tained fromE,’J’k by a decoding procedure described in Step 4. For example, if we choc
é 77 ¢ to be the respective arc lengths xf, y-, andz-coordinate lines then, from (3),

K?x=(1,0,0,0,1,0,0,0,1)T andQ?; , follow from the expressions fdE; , in (4).

Step 2(Construction of interface flux F) We first take
(Lij k), P k@), i) = (Lij kAP, hi jx™), (A" < A < A1), (53)

Then for every pair of adjacent cells j, k) and(i + 1, j, k),

(a) Define the normal direction of the cell interfag}e%’jyk between the two adjacent
cells(, j,k)yand(i + 1, j, k) as

_ (VE)i,jk +(VE)is1ijk
(V&) jk+ (VEitr ikl

i.e., the average direction ¢V£); j x and(V&); 1.} k. Expression (54) is an approximation
to the expression fon in (47) for the cell interface; +1ike Project the velocity vector
g = (u, v, w) into the normal and the tangential componedntst;, andt,) using Eq. (50).

(b) Do a MUSCL type data reconstruction in a component-by-component manner. |
example, in the& direction, letf be any of the above physical variablesp, wt1, 12, then,
instead of assuming a uniform state in the céll§, k) and(i + 1, j, k), we assume linearly
distributed states and use linear extrapolation to determine cell interface flow varigbies:
firrjk —0.5(fiz2jk — fisrjo ™) with r = (fijyju— fij/(fizzjk — fivsje)
andf, = fi jk +0.5(f jk — fi—pjer HIwithr = = (fig 6 — fij)/(fijk— ficsjw),
where¢ (r) = max(0, min(1,r)) is the minmod flux limiter and subscriptsand ¢ of f
correspond to right and left states, respectively.

(c) Solvethe Riemann problem of (51) as explained in the Appendix to get the interfac
flow variableg(p, p, w, 71, 72)T and hencép, p, u, v, w)" atthe cellinterface = §|+ ik

These are constants and will be denoted- bl'i/*l/z The fluxF is then determmed using

values ofL andP atn level and the Riemann solutlon fQ on cell interfaces.
The interfacial fluxe$s andH can be constructed in a similar way.

(54)

Step JUpdate the conserved variables EYhe conservative varlabl(Eé' are updated
as follows

EML _ En AL" /2 L2 A" G2 G2
Lk = EL kT AE (Fli2 ik —Filiaik) — An, (G %2k — G “12k)

ALY g2 n+1/2
- ALk (Hi,j,k+l/2 - Hi,j,kfl/z)' (55)
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Step 4(Decoding to geU{‘ﬁ() This step is trivial; after it we have updated physical

varlablesQ{‘ﬂ( as well as geometrical variabl

Step 5(Updatingh{; , to h ﬂ() This step is accomphshed by solving Eq. (26), using
the updated value@,”ﬁ( andK'”“k in its coefficients. (Note: this step is, of course, to be
bypassed ih = const. is assumed in the computation).

Step 6(Computation of the grid in th&—y—z space ai"*1). To calculate the grid at
the next time step, trapezoidal integration is applied to get

1 1 1 1

X=X+ 3 (AUl + T Rul) Mt —am
1 1 1

ylnjrk = yl j.k +3 (h| B kvl j.k + hlnTk |nTk) ()‘n+1 - )\n) (56)
1 1

2k =2+ 3 (sl o+ M kw! ) Gt —an).

By a grid we mean the lines joining the cell centers, not the cell interface lines. We rem:
that the grid in the physical plane is not used in the computation (only the valle suef
used) as the whole computation is carried out in the transformed spade-(the space).
So, this step is optional. However, the grid information is needed in computing steady fl
as an asymptotic state of unsteady flow for laxgn this case to check if a steady state is
reached, which means the flow at every fixed location inxthg-z plane does not change
with increasing time, we should compare the flow varialijeat the same fixed points
(X, Yy, 2) in the physical space and not at the same fixed points, ¢) in the transformed
plane; the latter are simply the pseudo-particles whose positions irrez space in
general move withh. and never reach an asymptotic state.

After this, we repeat steps 2—6 to advance the solution furthiet'tg and so on.

6. TEST EXAMPLES

ExampLE 1. The first example is a pseudo three-dimensional Riemann problem. T
uniform flows with states

Q1 = (p, p, U, v, w) = (0.25, 0.5, 5.8566 0, 0) (57)
Q. = (p, p, U, v, w) = (1.0, 1.0, 2.84, 0, 0.5) (58)

as depicted in Fig. 1 are separated by the separating plane and begin to interact with
other at the intersection line. Theoretically, this class of problems was analyzed by Loh
Liouin[5]. Inthe computation, the steady flow is achieved with time marching until the flo
structure and the variables do not change with time. A grid ok@®0 x 10 with A& =

An = At =0.01 is employed in the computation. Initially, a grid wittx = Ay = Az =
0.01 in the physical plane is laid over adomain of& < 0.6;0<y <10;0<z<0.1.
The initial data are given at each cell according to its positioy i 0.5 or y < 0.5,
representing cell-average values. The physical domain will change with time accord
to the pseudo-particle’s velocityg if h is not zero. If we follow the computational cells
(pseudo-particles), they will move out of initial physical domaimidirection as well as in
z-direction, and it would be difficult to have a steady state of flow in the original physic:
domain. To avoid this, as it was done in 2-D computations ([1]), the “motionless viewir
window” is applied in thex-direction.
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/N_plane’

Separating
plane - ----

FIG. 1. Sketch of a steady pseudo 3-D Riemann problem.

In Figs. 2 and 4 are shown computed density using our unified codk fe0 and
h = 0.999. We can see that the result for= 0 (Eulerian coordinates) is not satisfac-
tory: slip line is poorly resolved and the computed density is far from an exact soluti
in the region between expansion fan and the slip line. This behavior of computed sc
tion can be attributed to the fact that the slip line is always poorly resolved in Euleri
coordinates as a result of Godunov averaging across slip lines which, in general, do
coincide with coordinate lines. Moreover, the resolution of the slip line for the problem wi

Density (h=0)

: T T .
s o% .

° o
0.8} .
o>
9
Loz} o, .
o ©
o
o6} i
b
°
0.5 fa'
0.4 i 1 1 1 ‘ i
0.1 02 03 0.4 05 06 07 08

yix

FIG. 2. Density distribution in the plane = const. in a steady pseudo 3-D Riemann problem computed b
the present unified codl,= 0 (Eulerian).
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FIG.3. Density distribution in the plane= const. in a steady 2-D Riemann problem computed by the preser
unified 3-D codeh = 0 (Eulerian).

initial conditions (58) is even worse than that in the test with purely two-dimensional initi
conditions:

Q1= (p, p, U, v, w) = (0.25, 0.5, 5.8566 0, 0) (59)
Q2 = (P, p. U, v, w) = (1.0, 1.0, 2.84, 0, 0.0). (60)

This test forh = 0 with initial conditions (60) was computed using the 3-D code (Fig. 3)
showing a very similar result to the result in [1, Fig. 5a], as expected.

A comparison of Figs. 2 and 4 shows that the slip line resolution greatly improv
for h = 0.999 overh = 0, as expected. This is because the flow is steady and the s
surfaces coincide with the streamsurfaces which, in turn, coincide with the grid surfaces
h = 0.999, thus avoiding the Godunov averaging across slip surfaces.

Figure 5 shows the computed density using grid skewness pres@ramdetermined by
Eq. (32), which is solved at each time step. As predicted, the slip line resolution is just
sharp as in the Lagrangian case=t 0.999).

All the computations started with the Eulerian grid. The flow-generated grids, i.¢
the lines joining the cell centers, at steady state are shown in Fig. 6 on the planes
const. We note that (a) the grid for= 0.999 is severely deformed near the slip line,
and such grid deformation can cause inaccuracy locally [1]; (b) the grid using skewn
preservingh is much more uniform everywhere although, unlike the 2-D case, is no
orthogonal.

ExAMPLE 2. In the second example, we consider a truly three-dimensional, initic
boundary value problem—the supersonic inviscid corner flow. This problem was compu
in [5] using a steady code which is valid only for purely supersonic flow. The geometric
configuration is shown in Fig. 7 ([6]). Two intersecting wedges, both with angle 6f 9.5
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FIG. 4. Density distribution in the plane = const. in a steady pseudo 3-D Riemann problem computed b
the present unified codh,= 0.999 (Lagrangian).

form an axial corner over which there is a Mach 3 flow. The flow field consists of two plan
wedge shocks, two embedded shocks, a corner shock, and the shear layers (slip surf
as shown in Fig. 8. We employ a mesh of 555 x 45 in thex—y—z-space. This test was

computed forh = 0 (Eulerian),h = 0.999, and forh chosen to preserve grid skewness.
The contour plots are presented in the Figs. 9—11. The qualitative behavior of the comp

08

i=d=i=)

£07r 1

06} . -exact ]

o]
0000 0~ computed
O,
0.5 X
0. 4 i 1 1 1 1 i
0.1 0.2 03 04 0.5 0.6 07 08

yix

FIG. 5. Density distribution in the plang = const. in a steady pseudo 3-D Riemann problem computed b
the present unified code withchosen to preserve grid skewness.
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FIG. 6. Flow generated grids in the plage= const. in the steady pseudo 3-D Riemann problemtfes: 0
(Eulerian) (top, left)h = 0.999 (Lagrangian) (top, rightj) chosen to preserve grid skewness (bottom).

solutions is very similar to that presented in Fig. 8. The resolutions of slip surfaces in 1
case of grid skewness preservim(fig. 9) and in the Lagrangian cage-£ 0.999) (Fig. 10)
are similar and are clearly better than that for the Eulerian in Fig. 11. The experimer
results from [6] are presented in the Fig. 12. The angle between the shear layers for
skewness preserving and for the Lagrangian cashk & 0.999) matches very well with
the experimental result. With the corner shock aligned, the agreement for shocks betw
the experimental results (Fig. 12) and the Lagrangian results (Fig. 10) are also perfect
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FIG. 7. Supersonic flow past a corner: sketch of the problem.

embedded shocks are curved which is in agreement with experiment. It can be explaine
the fact that the pseudo-particles, which in the Lagrangian case are fluid particles, ter
crowd together when compressed, resulting in automatic refinement of the grid near shc
Consequently, shock resolution is improved.

0.8
o7} Wedge Shock 1
0.6 / -
0.5} Corner Shock 7
<
>|9 0.4} e
=

Shear Layers )

Embedded Shock

0.1 0.2 0.3 0.4 05 0.6 07 0.8
(Z-2o)/Xo

FIG. 8. Supersonic flow past a corner: structure of the flow [6].
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FIG. 9. Supersonic flow past a corner: contours of flow variables in the coordidate& — z,)/X,, Y =
(Y — Yo)/%o, h chosen to preserve grid skewness.
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FIG. 10. Supersonic flow past a corner: contours of flow variables in the coordidate$z — zy) /%o, Y =
(Y — Yo) /%o, h = 0.999 (Lagrangian).
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Density — h=0.0 Pressure —— h=0.0

2

.J.
|
0.
Z

FIG. 11. Supersonic flow past a corner: contours of flow variables in the coordidate$z — z,) /%, Y =
(Y — Yo)/Xo, h = 0 (Eulerian).

FIG. 12. Supersonic flow past a corner: experimental results reprinted from [6].
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7. CONCLUSIONS

In this paper we have successfully extended the unified approach oftHi[1] to
the three-dimensional Euler equations of gas dynamics by choosing the free fumctio
to preserve grid skewness. It has been tested on two problems and found that with

free functionh so chosen, the unified coordinate system is superior to both Eulerian &

Lagrangian system in that: (a) it resolves slip lines as sharply as the Lagrangian sys!
especially for steady flows, (b) it avoids the severe grid deformation of the Lagrangi
system which causes inaccuracy and breakdown of computation.

APPENDIX A: SOLUTION TO THE RIEMANN PROBLEM (51)

We shall first find all possible solutions to (51) for- 0 andé < 0 separately, and then
use them to construct solution to the Riemann problem (51}-far < & < +o0.

Casel. £ > 0.

The Riemann problem is

{

where

pA
pPAw
PATY
PAT
pAe
A
B
C

JE oF
E@Q.§) =E

£>0,
[ p(l-ho
p(1—hew?+p
p(1—hot
E—s p(1-hor
p(L—hywe+ wp
—hu/S
—hv/S
—hw/S

(A1)

with h = h; = const. Similarity solution to (A.1) exists in the form

E=Ew),

_§
p=

(A.2)

After rewriting the system (A.1) in a matrix form we can get the set of eigenvalues.

o1 =0 (multiplicity of 3)

03 = 2(1 —h)w (multiplicity of 3)

oL = ;{(1 — h)w + a}.

(A.3)

(A.4)

(A.5)
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The corresponding set of right eigenvectors is

ri=(0,0,0,0,0,1,0,07 (A.6)
ro=(0,0,0,0,0,0,1,0" (A7)
rs=(0,0,0,0,0,0,0,1)7 (A.8)
r4=(17o’07050907070)T (A.9)
hliz is| hlir is| hliz 2]\
—(0,0,0,1,0 — i - A.10
s < oz ko ks oy |Ki k3| oz |ki ko ( )
hli, is| hli i hliy in |\
re = (o,o,o,o, PR LY FRLLE L RNRCH BRI A '_2) (A.11)
o2 ()2 J3| o021 I3 o2 |1 )2
S| Fh [i2 js| £h i1 js| Fh i P2\
= 2’ 11 R 07 O’ 3 ) . A12
* (a pa paocy K2 k3| paoy |ki ks3|' paoy |ki ko ( )

We shall now give solutions to the elementary waves in detail: the expansion wa

the shock wave, and the slip line. These solutions will be used in constructiggsihiée

Riemann solution to (51).

Smooth solutions. The expansion wave is a smooth solution corresponding to tt

o+ characteristic fields which can be derived from the following system of ODEs.

dp 1

=@ (A.13)
3‘; _ j:% (A.14)
‘;TS _0 (A.15)
‘Z_’; _0 (A.16)
Fe e (1
i'ls — j:p;ai IJ<1 IJ<Z (A.18)

The solutions fop, w, 71, 7, relate the flow stat® = (p, p, @, 11, T2)" in the expansion

fan to the initial stateQq = (oo, Po, wo, (T1)o, (T2)0)" upstream of the fan through the

following expressions

P = pPo (p)l/y
Po

(A.20)

(A.21)
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71 = (T1)o (A.22)
72 = (12)o, (A.23)

wherea = (%’)1/2.
We remark that on crossing the expansion fan, these relations are indepen#gnt o
andh;.
To find the solution inside the expansion fan, we consider the characteristic ray throt
the origin (0, 0) and a general point, ¢) inside the fan. The slope of the characteristic ray is
d¢ ¢ S
— =2=0r=—{(1-hwta}. A.24
T e A{( o £ a} (A.24)
Using the above expression and the equatiomsfor (A.21), we get

2(1—h -1 AN e
p=po ( ) F Y <(1 — hwo — S,uﬂ , (A.25)

y—2h+1 " (y—2h+Da
whereA is found from (A.17)—(A.19) to be a function qf

p hd
A= 0e%P, g(p) = :F/ M—p (A.26)
P ALp? +Byip
with
239 -5
AL =(1-h (woiF > 0080 Py
y—1
21(1 —
B, — y(@d—h) .
y—1

Equations (A.25)—(A.26) define an implict functipw), u = %.The expressionfqr, w, 1,
andt; in terms ofu can be easily obtained from (A.20)—(A.23). Like they depend on
(Ky, hy), but atue = 0 they depend only oh,. The variations oA, B, andC across an ex-
pansion fan can also be obtained from (A.17)—(A.19), but they are not needed in calcula
the fluxF and are thus not given here.

Discontinuous solutions. The Rankine—Hugoniot jump conditions of the system (A.1)
are

slpA] =[p(1-hw9 (A.27)
slpaw] = [(p(1 — o’ + S (A.28)
slpAn] =[p(1—honr g (A.29)
sloats] = [p(1 — hwtes (A.30)
slpAe] = [(p(1— h)we+ wp)S (A.31)

s[A] = —[hu] (A.32)
s[B] = —[hv] (A.33)
s[C] = —[hw], (A.34)

where [] denotes the jump across the discontinuity whose slope is denolsed:bgé.
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Shock waves.The shock jump relations after some algebraic manipulations can |
expressed in terms of = % as follows:

1/2
s= > 1—h)w0j:a0(y+1(a—1)+1) ] (A.35)
Ao 2y
_ ay+D+y-1
T -4y 41 (A-36)
(@ — Dag

= wot A.37
T 05 [ + Da+y — 1) (A37)
71 = (T1)o (A.38)
72 = (2o (A.39)

We remark that the relations of the flow variablgs £, w, ) across the shock are inde-
pendent ofK; andh;, while the slope of the shock waweis dependent oK, andh;.
But this dependence is not needed in finding the pregsuaed hence als@, w, 11, 12),
at u = 0 provided only thas > 0. (If s < 0, the shock wave will appear in the quadrant
(6 <0, >0)).

We note that the jumps oA, B, andC across a shock may also be obtained from
(A.32)—(A.34), but they are not used in calculating the fluand are thus not given here.

Slip lines. For the slip line corresponding to the speed o, = A%(1 —h)wg > 0 we
find, from Rankine—Hugoniot jump conditions (A.27)—(A.34), that

pP=po (A.40)
w = wy (A.41)

but p, 71, 2 and A, B, C may jump arbitrarily.

We again remark that, except the speethe relations (A.40)—(A.41) across a slip line
are independent oK, h;). Althoughsdepends onK,, h;), the dependence is not needed
in calculating f, o, w, 71, T2) and the flux=, provideds > 0. (If s < 0, the slip line appears
in the quadranty < 0, A > 0).)

Case (2). £ <O0.

The solution forg < 0 can be obtained similarly.

Now, after obtaining all possible solutions for> 0 andé < 0 separately, the question
is how to construct the solution to the Riemann problemifer 0, —co < & < +o00. We
find that att = 0 the coefficients ift andF jump discontinuously. This is the difficulty one
would face with in the Eulerian system using curvilinear coordinates rather than Cartes
coordinates.

The Riemann solution in the neighborhood &% 0 is given by thes;-field whose
speed iss = 0. The flow states on the two sides of cell interfdce- O are related by
(A.27)—(A.34) withs = 0. These are eight equations relating five jumpspp, w, 1,
andr, and, therefore, in general have no solution, except whesa h;, L, = L, M; =
M,N =N, P =R, Q = Q, andR = R. In the latter case, there is a solution: the
trivial solution [p] = [p] = [@] = [11] = [12] = 0, i.e., a continuous solution.
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To avoid the difficulty of the non-existence of the solution to the Rankine—Hugoni
relations (A.27)—(A.34), we replace bdthandh, by their average, i.ety = h, = 0.5(h, +
h) = ﬁ, and similarly replacd.; andL,, M, andM;, N, andN;, B and P, Q; and Q,
andR andR:, by their average&, M, N, P, Q, andR, respectively. Consequently, the
Rankine—Hugoniot relations are satisfied and the flow is continuous acr:as% =0.We
note from previous discussions that these replacements do not alter the relations of the
variables p, p, w, 71, T2) across the elementary waves (the expansion fan, the shock, &
the slip line) as they do not depend &b, f). It should be pointed out that the replacements
of the geometric variabled.( M, N, P, Q, R) by their averages are a fictious one—they
are invoked only to ensure the existence of solution to (A.27)—(A.34)—but these aver:
values are never used in the computation. On the other hand, the replaceimezndh,
by his a necessary one: it is used in Eq. (A.25) when the jline 0 is inside the expan-
sion fan.

The Riemann solution foroo < & < +o00 can now be constructed in the usual way as if
the slip line corresponding ®= o; = 0 did not exist: shock (or expansion fan), slip line,
and expansion fan (or shock), separated by uniform flow regions.

Then-split andz-split Riemann problems can be treated similarly.
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